Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606833

RESUMO

Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.


Assuntos
Brachypodium , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Brachypodium/genética , Polimorfismo Genético , Genômica , Evolução Molecular
2.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470914

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Assuntos
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , RNA Interferente Pequeno , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais/genética , Filogenia , Evolução Molecular
3.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38504651

RESUMO

Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.


Assuntos
Brachypodium , Flores , Herança Multifatorial , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Interação Gene-Ambiente , Meio Ambiente , Fenótipo , Locos de Características Quantitativas
5.
Trends Plant Sci ; 27(10): 1002-1016, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644781

RESUMO

It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.


Assuntos
Brachypodium , Biocombustíveis , Brachypodium/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica
6.
New Phytol ; 236(1): 182-194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35715973

RESUMO

Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.


Assuntos
Arabidopsis , Adaptação Fisiológica/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Secas , Evolução Molecular , Temperatura Alta
7.
Mol Ecol ; 31(1): 70-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601787

RESUMO

Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics - and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species.


Assuntos
Brachypodium , Variação Genética , Brachypodium/genética , Genética Populacional , Genoma de Planta , Repetições de Microssatélites
9.
Methods Mol Biol ; 2250: 95-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900595

RESUMO

Transposable elements (TEs) are the main component of eukaryotic genomes. Besides their impact on genome size, TEs are also functionally important as they can alter gene expression and influence phenotypic variation. In plants, most top-down studies focus on extremely clear phenotypes such as the shape or the color of individuals and do not explore fully the role of TEs in evolution. Assessing the impact of TEs in a more systematic manner, however, requires identifying active TEs to further study their impact on phenotypes. In this chapter, we describe an in planta approach that consists in activating TEs by interfering with pathways involved in their silencing. It enables to directly investigate the functional impact of single TE families at low cost.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Epigênese Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
10.
Methods Mol Biol ; 2250: 177-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900604

RESUMO

Transposable elements (TEs) are an important cause of evolutionary change and functional diversity, yet they are routinely discarded in the first steps of many analyses. In this chapter we show how, given a reference genome, TEs can be incorporated fairly easily into functional and evolutionary studies. We offer a glimpse into a program which detects TE insertion polymorphisms and discuss practical issues arising from the diversity of TEs and genome architectures. Detecting TE polymorphisms relies on a series of ad hoc criteria because, in contrast to single nucleotide polymorphisms, there is no general way to model TE activity. Signatures of TE polymorphisms in reference-aligned reads depend on the type of TE as well as on the complexity of the genomic background. As a consequence, a basic understanding of the limitations imposed by the data and of what the algorithm is doing is important to obtain reliable results. Here, we hope to convey such a basic understanding and help researchers to avoid some of the common pitfalls of TE polymorphism detection.


Assuntos
Brachypodium/genética , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Polimorfismo Genético , Algoritmos , DNA de Plantas/genética , Análise de Sequência de DNA
11.
Commun Biol ; 4(1): 375, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742098

RESUMO

The cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.


Assuntos
Cor , Variação Genética , Genoma de Planta , Haplótipos , Metagenômica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Cromossomos de Plantas , Variações do Número de Cópias de DNA , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Triticum/metabolismo
12.
Plant J ; 106(4): 993-1007, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629439

RESUMO

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) act as intracellular sensors for pathogen-derived effector proteins and trigger an immune response, frequently resulting in the hypersensitive cell death response (HR) of the infected host cell. The wheat (Triticum aestivum) NLR Pm2 confers resistance against the fungal pathogen Blumeria graminis f. sp. tritici (Bgt) if the isolate contains the specific RNase-like effector AvrPm2. We identified and isolated seven new Pm2 alleles (Pm2e-i) in the wheat D-genome ancestor Aegilops tauschii and two new natural AvrPm2 haplotypes from Bgt. Upon transient co-expression in Nicotiana benthamiana, we observed a variant-specific HR of the Pm2 variants Pm2a and Pm2i towards AvrPm2 or its homolog from the AvrPm2 effector family, BgtE-5843, respectively. Through the introduction of naturally occurring non-synonymous single nucleotide polymorphisms and structure-guided mutations, we identified single amino acids in both the wheat NLR Pm2 and the fungal effector proteins AvrPm2 and BgtE-5843 responsible for the variant-specific HR of the Pm2 variants. Exchanging these amino acids led to a modified HR of the Pm2-AvrPm2 interaction and allowed the identification of the effector head epitope, a 20-amino-acid long unit of AvrPm2 involved in the HR. Swapping of the AvrPm2 head epitope to the non-HR-triggering AvrPm2 family member BgtE-5846 led to gain of a HR by Pm2a. Our study presents a molecular approach to identify crucial effector surface structures involved in the HR and demonstrates that natural and induced diversity in an immune receptor and its corresponding effectors can provide the basis for understanding and modifying NLR-effector specificity.


Assuntos
Aegilops/genética , Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/genética , Alelos , Aminoácidos/metabolismo , Ascomicetos/fisiologia , Resistência à Doença , Proteínas Fúngicas/genética , Variação Genética , Interações Hospedeiro-Patógeno , Mutação , Proteínas NLR/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/fisiologia , Triticum/imunologia , Triticum/microbiologia
13.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933168

RESUMO

Brachypodium distachyon (Brachypodium) is a non-domesticated model grass species that can be used to test if variation in genetic sequence or methylation are linked to environmental differences. To assess this, we collected seeds from 12 sites within five climatically distinct regions of Turkey. Seeds from each region were grown under standardized growth conditions in the UK to preserve methylated sequence variation. At six weeks following germination, leaves were sampled and assessed for genomic and DNA methylation variation. In a follow-up experiment, phenomic approaches were used to describe plant growth and drought responses. Genome sequencing and population structure analysis suggested three ancestral clusters across the Mediterranean, two of which were geographically separated in Turkey into coastal and central subpopulations. Phenotypic analyses showed that the coastal subpopulation tended to exhibit relatively delayed flowering and the central, increased drought tolerance as indicated by reduced yellowing. Genome-wide methylation analyses in GpC, CHG and CHH contexts also showed variation which aligned with the separation into coastal and central subpopulations. The climate niche modelling of both subpopulations showed a significant influence from the "Precipitation in the Driest Quarter" on the central subpopulation and "Temperature of the Coldest Month" on the coastal subpopulation. Our work demonstrates genetic diversity and variation in DNA methylation in Turkish accessions of Brachypodium that may be associated with climate variables and the molecular basis of which will feature in ongoing analyses.


Assuntos
Brachypodium/genética , Metilação de DNA/genética , Variação Genética/genética , Clima , Secas , Genoma de Planta/genética , Folhas de Planta/genética , Sementes/genética , Estresse Fisiológico/genética , Turquia
14.
Genome Biol Evol ; 12(11): 1994-2001, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32853352

RESUMO

Transposable elements (TEs) constitute a large fraction of plant genomes and are mostly present in a transcriptionally silent state through repressive epigenetic modifications, such as DNA methylation. TE silencing is believed to influence the regulation of adjacent genes, possibly as DNA methylation spreads away from the TE. Whether this is a general principle or a context-dependent phenomenon is still under debate, pressing for studying the relationship between TEs, DNA methylation, and nearby gene expression in additional plant species. Here, we used the grass Brachypodium distachyon as a model and produced DNA methylation and transcriptome profiles for 11 natural accessions. In contrast to what is observed in Arabidopsis thaliana, we found that TEs have a limited impact on methylation spreading and that only few TE families are associated with a low expression of their adjacent genes. Interestingly, we found that a subset of TE insertion polymorphisms is associated with differential gene expression across accessions. Thus, although not having a global impact on gene expression, distinct TE insertions may contribute to specific gene expression patterns in B. distachyon.


Assuntos
Brachypodium/genética , Metilação de DNA , Elementos de DNA Transponíveis , Expressão Gênica , Variação Genética , Genoma de Planta
15.
New Phytol ; 227(6): 1736-1748, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31677277

RESUMO

Transposable elements (TEs) are the main reason for the high plasticity of plant genomes, where they occur as communities of diverse evolutionary lineages. Because research has typically focused on single abundant families or summarized TEs at a coarse taxonomic level, our knowledge about how these lineages differ in their effects on genome evolution is still rudimentary. Here we investigate the community composition and dynamics of 32 long terminal repeat retrotransposon (LTR-RT) families in the 272-Mb genome of the Mediterranean grass Brachypodium distachyon. We find that much of the recent transpositional activity in the B. distachyon genome is due to centromeric Gypsy families and Copia elements belonging to the Angela lineage. With a half-life as low as 66 kyr, the latter are the most dynamic part of the genome and an important source of within-species polymorphisms. Second, GC-rich Gypsy elements of the Retand lineage are the most abundant TEs in the genome. Their presence explains > 20% of the genome-wide variation in GC content and is associated with higher methylation levels. Our study shows how individual TE lineages change the genetic and epigenetic constitution of the host beyond simple changes in genome size.


Assuntos
Brachypodium , Retroelementos , Brachypodium/genética , Evolução Molecular , Genoma de Planta/genética , Filogenia , Retroelementos/genética , Sequências Repetidas Terminais/genética
16.
Plant J ; 96(2): 438-451, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044522

RESUMO

Grasses are essential plants for ecosystem functioning. Quantifying the selective pressures that act on natural variation in grass species is therefore essential regarding biodiversity maintenance. In this study, we investigate the selection pressures that act on two distinct populations of the grass model Brachypodium distachyon without prior knowledge about the traits under selection. We took advantage of whole-genome sequencing data produced for 44 natural accessions of B. distachyon and used complementary genome-wide selection scans (GWSS) methods to detect genomic regions under balancing and positive selection. We show that selection is shaping genetic diversity at multiple temporal and spatial scales in this species, and affects different genomic regions across the two populations. Gene ontology annotation of candidate genes reveals that pathogens may constitute important factors of positive and balancing selection in B. distachyon. We eventually cross-validated our results with quantitative trait locus data available for leaf-rust resistance in this species and demonstrate that, when paired with classical trait mapping, GWSS can help pinpointing candidate genes for further molecular validation. Thanks to a near base-perfect reference genome and the large collection of freely available natural accessions collected across its natural range, B. distachyon appears as a prime system for studies in ecology, population genomics and evolutionary biology.


Assuntos
Brachypodium/genética , Variação Genética , Genoma de Planta/genética , Genômica , Locos de Características Quantitativas/genética , Adaptação Fisiológica , Brachypodium/fisiologia , Ecossistema , Interações Hospedeiro-Patógeno , Aprendizado de Máquina , Modelos Biológicos , Fenótipo , Seleção Genética , Estresse Fisiológico
17.
Front Nutr ; 5: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29644218

RESUMO

The UK currently has the most detailed, directly measured data for food wasted in the home. This includes information on the exact types of food wasted. These data allow calculation of the nutrients within that waste, as well as its environmental impact. The results progress the conversation beyond how much food is wasted or its energy content; it permits the implications for nutrition and sustainability to be assessed in detail. Data for UK household food waste were expressed as an average waste per capita for each type of food. Each food type was matched with an item (or group of items) from the UK Composition of Foods (7th Ed). The level of nutrients wasted was compared to UK Reference Nutrient Intakes (RNIs) for adult women (19-50 years, used as a proxy for general population requirements). The data were normalized into "nutrient days" wasted per capita per year, then into the number of complete diet days (for 21 nutrients plus energy). Results show that approximately 42 daily diets were discarded per capita per year. By individual nutrient, the highest losses were vitamin B12, vitamin C, and thiamin (160, 140, and 130 nutrient days/capita/year, respectively). For protein, dietary energy and carbohydrates, 88, 59, and 53 nutrient days/capita/year, respectively, were lost. Substantial losses were also found for under-consumed nutrients in the UK: calcium, which was mostly lost via bakery (27%) and dairy/eggs (27%). Food folate was mainly lost through fresh vegetables/salads (40%) and bakery (18%), as was dietary fiber (31 and 29%, respectively). Environmental impacts were distributed over the food groups, with wasted meat and fish the single largest contribution. For all environmental impacts studied, the largest contribution came from agricultural production. This paper shows that there are areas where interventions preventing food waste and promoting healthy eating could work together (e.g., encouraging consumption of vegetables or tackling overbuying, especially of unhealthy foods). Food manufacturers and retailers, alongside governments and NGOs, have a key role to minimize waste of environmentally impactful, nutrient-dense foods, for instance, by helping influence people's behaviors with appropriate formulation of products, packaging, portioning, use of promotions, or public education.

18.
J Sci Food Agric ; 98(9): 3219-3224, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29427307

RESUMO

Global food systems will face unprecedented challenges in the coming years. They will need to meet the nutritional needs of a growing population and feed an expanding demand for proteins. This is against a backdrop of increasing environmental challenges (water resources, climate change, soil health) and the need to improve farming livelihoods. Collaborative efforts by a variety of stakeholders are needed to ensure that future generations have access to healthy and sustainable diets. Food will play an increasingly important role in the global discourse on health. These topics were explored during Nestlé's second international conference on 'Planting Seeds for the Future of Food: The Agriculture, Nutrition and Sustainability Nexus', which took place in July 2017. This article discusses some of the key issues from the perspective of three major stakeholder groups, namely farming/agriculture, the food industry and consumers. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Conservação dos Recursos Naturais , Dieta Saudável , Abastecimento de Alimentos , Agricultura/métodos , Proteínas Alimentares , Indústria Alimentícia , Saúde Global , Humanos , Micronutrientes/deficiência , Valor Nutritivo , Plantas Comestíveis/crescimento & desenvolvimento , Desnutrição Proteico-Calórica , Sementes
19.
Plant Biotechnol J ; 16(1): 245-253, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28561994

RESUMO

Plant diseases are a serious threat to crop production. The informed use of naturally occurring disease resistance in plant breeding can greatly contribute to sustainably reduce yield losses caused by plant pathogens. The Ta-Lr34res gene encodes an ABC transporter protein and confers partial, durable, and broad spectrum resistance against several fungal pathogens in wheat. Transgenic barley lines expressing Ta-Lr34res showed enhanced resistance against powdery mildew and leaf rust of barley. While Ta-Lr34res is only active at adult stage in wheat, Ta-Lr34res was found to be highly expressed already at the seedling stage in transgenic barley resulting in severe negative effects on growth. Here, we expressed Ta-Lr34res under the control of the pathogen-inducible Hv-Ger4c promoter in barley. Sixteen independent barley transformants showed strong resistance against leaf rust and powdery mildew. Infection assays and growth parameter measurements were performed under standard glasshouse and near-field conditions using a convertible glasshouse. Two Hv-Ger4c::Ta-Lr34res transgenic events were analysed in detail. Plants of one transformation event had similar grain production compared to wild-type under glasshouse and near-field conditions. Our results showed that negative effects caused by constitutive high expression of Ta-Lr34res driven by the endogenous wheat promoter in barley can be eliminated by inducible expression without compromising disease resistance. These data demonstrate that Ta-Lr34res is agronomically useful in barley. We conclude that the generation of a large number of transformants in different barley cultivars followed by early field testing will allow identifying barley lines suitable for breeding.


Assuntos
Hordeum/metabolismo , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Resistência à Doença/genética , Resistência à Doença/fisiologia , Hordeum/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
20.
Genome Biol Evol ; 10(1): 304-318, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281015

RESUMO

Transposable element (TE) activity has emerged as a major cause of variation in genome size and structure among species. To what extent TEs contribute to genetic variation and divergence within species, however, is much less clear, mainly because population genomic data have so far only been available for the classical model organisms. In this study, we use the annual Mediterranean grass Brachypodium distachyon to investigate TE dynamics in natural populations. Using whole-genome sequencing data for 53 natural accessions, we identified more than 5,400 TE polymorphisms across the studied genomes. We found, first, that while population bottlenecks and expansions have shaped genetic diversity in B. distachyon, these events did not lead to lineage-specific activations of TE families, as observed in other species. Instead, the same families have been active across the species range and TE activity is homogeneous across populations, indicating the presence of conserved regulatory mechanisms. Second, almost half of the TE insertion polymorphisms are accession-specific, most likely because of recent activity in expanding populations and the action of purifying selection. And finally, although TE insertion polymorphisms are underrepresented in and around genes, more than 1,000 of them occur in genic regions and could thus contribute to functional divergence. Our study shows that while TEs in B. distachyon are "well-behaved" compared with TEs in other species with larger genomes, they are an abundant source of lineage-specific genetic variation and may play an important role in population divergence and adaptation.


Assuntos
Brachypodium/genética , Elementos de DNA Transponíveis , DNA de Plantas/genética , Seleção Genética , Ecossistema , Evolução Molecular , Frequência do Gene , Deriva Genética , Variação Genética , Genoma de Planta , Região do Mediterrâneo , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...